Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 83: 75-85, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38428729

RESUMO

The success of forward metabolic engineering depends on a thorough understanding of the behaviour of a heterologous metabolic pathway within its host. We have recently described CRI-SPA, a high-throughput gene editing method enabling the delivery of a metabolic pathway to all strains of the Saccharomyces cerevisiae knock-out library. CRI-SPA systematically quantifies the effect of each modified gene present in the library on product synthesis, providing a complete map of host:pathway interactions. In its first version, CRI-SPA relied on the colour of the product betaxanthins to quantify strains synthesis ability. However, only a few compounds produce a visible or fluorescent phenotype limiting the scope of our approach. Here, we adapt CRI-SPA to onboard a biosensor reporting the interactions between host genes and the synthesis of the colourless product cis-cis-muconic acid (CCM). We phenotype >9,000 genotypes, including both gene knock-out and overexpression, by quantifying the fluorescence of yeast colonies growing in high-density agar arrays. We identify novel metabolic targets belonging to a broad range of cellular functions and confirm their positive impact on CCM biosynthesis. In particular, our data suggests a new interplay between CCM biosynthesis and cytosolic redox through their common interaction with the oxidative pentose phosphate pathway. Our genome-wide exploration of host:pathway interaction opens novel strategies for improved production of CCM in yeast cell factories.

2.
Nucleic Acids Res ; 51(17): e91, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37572348

RESUMO

Biological functions are orchestrated by intricate networks of interacting genetic elements. Predicting the interaction landscape remains a challenge for systems biology and new research tools allowing simple and rapid mapping of sequence to function are desirable. Here, we describe CRI-SPA, a method allowing the transfer of chromosomal genetic features from a CRI-SPA Donor strain to arrayed strains in large libraries of Saccharomyces cerevisiae. CRI-SPA is based on mating, CRISPR-Cas9-induced gene conversion, and Selective Ploidy Ablation. CRI-SPA can be massively parallelized with automation and can be executed within a week. We demonstrate the power of CRI-SPA by transferring four genes that enable betaxanthin production into each strain of the yeast knockout collection (≈4800 strains). Using this setup, we show that CRI-SPA is highly efficient and reproducible, and even allows marker-free transfer of genetic features. Moreover, we validate a set of CRI-SPA hits by showing that their phenotypes correlate strongly with the phenotypes of the corresponding mutant strains recreated by reverse genetic engineering. Hence, our results provide a genome-wide overview of the genetic requirements for betaxanthin production. We envision that the simplicity, speed, and reliability offered by CRI-SPA will make it a versatile tool to forward systems-level understanding of biological processes.


Assuntos
Edição de Genes , Saccharomyces cerevisiae , Betaxantinas , Edição de Genes/métodos , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...